Vacancy coalescence during oxidation of iron nanoparticles

Cabot A, Puntes VF, Shevchenko E, Yin Y, Balcells L, Marcus MA, Hughes SM, Alivisatos AP.
J Am Chem Soc. 2007 Aug 29;129(34):10358-60. Epub 2007 Aug 3.
Abstract
In the present work, we analyze the geometry and composition of the nanostructures obtained from the oxidation of iron nanoparticles. The initial oxidation of iron takes place by outward diffusion of cations through the growing oxide shell. This net material flow is balanced by an opposite flow of vacancies, which coalesce at the metal/oxide interface. Thus, the partial oxidation of colloidal iron nanoparticles leads to the formation of core−void−shell nanostructures. Furthermore, the complete oxidation of iron nanoparticles in the 3−8 nm size range leads to the formation of hollow iron oxide nanoparticles. We analyze the size and temperature range in which vacancy coalescence during oxidation of amine-stabilized iron nanoparticles takes place. Maghemite is the crystallographic structure obtained from the complete oxidation of iron nanoparticles under our synthetic conditions.